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اختار مركز أبحاث الذكاء الاصطناعي )أيرند( هذا البحث لتقديم تلخيص عنه يبرز أهميته ويقربه 

 للباحثين

يقدم هذا البحث نموذجًا مبتكرًا يعتمد على التعلم المعزز لتصميم بنى الشبكات العصبية تلقائيًا، وهو 

يهدف هذا النهج إلى تحسين أداء الشبكات  .Neural Architecture Search (NAS) ما يعُرف بـ
البشرية في  العصبية المستخدمة في تصنيف الصور ونمذجة اللغة، مع تقليل الاعتماد على الخبرات

كـ "وحدة تحكم" لتوليد الأوصاف المعمارية  (RNN) تصميم البنى. باستخدام شبكة عصبية متكررة

للشبكات، يتم تدريب النموذج باستخدام التعلم المعزز لتحسين دقة الشبكات الناتجة على مجموعة 

 .بيانات التحقق

 
 :النقاط الرئيسية في البحث

 :Neural Architecture Search (NAS) مفهوم

 تعتمد NAS على شبكة عصبية متكررة (RNN)  كـ "وحدة تحكم" تقوم بتوليد بنى الشبكات

 .العصبية على شكل سلاسل متغيرة الطول من الرموز
  يتم تدريب الشبكة الناتجة )الشبكة الفرعية( على بيانات فعلية، ويتم قياس أدائها باستخدام

 .مجموعة تحقق

  الفرعية كإشارة مكافأةيُستخدم أداء الشبكة (Reward)  لتحديث وحدة التحكم، مما يحُسن من

 .تصاميم الشبكات بمرور الوقت

 :التحديات في تصميم الشبكات التقليدية

 يتطلب تصميم الشبكات العصبية خبرة كبيرة ووقتاً طويلًا  :تعقيد التصميم اليدوي. 
 مثالية أو مكلفة حسابيًا قد يؤدي إلى تصاميم غير :الاعتماد على التجربة والخطأ. 

 النماذج التقليدية تستكشف مساحة تصميم محدودة وثابتة :التقييد بالمعمارية الثابتة. 

 :NAS آلية عمل

 .لتوليد وصف معماري للشبكة (RNN) تستخدم وحدة التحكم :توليد البنية .1

 .بياناتيتم بناء الشبكة الناتجة وتدريبها على مجموعة  :تدريب الشبكة الفرعية .2

يتم استخدام أداء الشبكة الفرعية على مجموعة التحقق لتحديث وحدة  :تحديث وحدة التحكم .3
 .REINFORCE التحكم باستخدام خوارزمية

 .تكُرر العملية لتوليد شبكات أفضل بمرور الوقت :التكرار .4

 
 :أهمية البحث

 :تحسين دقة وكفاءة النماذج

 على مجموعة بيانات CIFAR-10:  
o متفوقًا على العديد من النماذج اليدوية مثل3.65ل الخطأ إلى وصل معد ،% 

ResNet وDenseNet. 
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o  1.05حقق النموذج سرعة تنفيذ أعلى بنسبةx مقارنةً بأفضل نموذج بشري. 

 على مجموعة بيانات Penn Treebank:  

o أنتج NAS خلية متكررة جديدة تفوقت على خلية LSTM التقليدية، محققةً معدل 

Perplexity  3.6أقل بـ. 

 :حل مشكلات التصميم اليدوي

 يقلل من الحاجة إلى الخبرة البشرية في تصميم الشبكات. 

 يستكشف مساحات تصميم غير محدودة، بما في ذلك الشبكات العميقة جداً أو المتفرعة. 

 :التطبيقات متعددة المهام

 يمكن استخدام NAS المهام مثل تصنيف  لتصميم شبكات تناسب مجموعة متنوعة من

 .الصور، النمذجة اللغوية، أو التجزئة الدلالية

 
 :التطبيقات المحتملة

 :تصنيف الصور

 تحسين أداء النماذج في التعرف على الكائنات والوجوه. 

 :النمذجة اللغوية

 تقديم خلايا متكررة جديدة لتحسين أداء المهام مثل الترجمة الآلية أو توليد النصوص. 

 :دلاليةالتجزئة ال

 تصميم شبكات أكثر كفاءة لتقسيم الصور إلى مناطق محددة، مثل تطبيقات القيادة الذاتية. 

 :التطبيقات الطبية

  تحسين الشبكات المستخدمة في تحليل الصور الطبية مثل الأشعة السينية أو التصوير بالرنين

 .المغناطيسي

 :الصناعات

  في خطوط الإنتاجتحسين عمليات مراقبة الجودة واكتشاف العيوب. 

 
 :القيود والتحديات

 :التكلفة الحسابية .1

o تدريب الشبكات الفرعية يتطلب موارد كبيرة، خاصة في البيئات الموزعة. 
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 :جودة النماذج الناتجة .2

o يعتمد الأداء بشكل كبير على جودة البيانات المستخدمة في التدريب. 

 :قابلية التعميم .3

o  عند تطبيقها على أنواع بيانات أو مهام جديدةقد تواجه التقنية صعوبة في التعميم. 

 
 :الإنجازات الرئيسية للبحث

 التصنيف على CIFAR-10:  

o حقق NAS  متفوقًا على النماذج البشرية مثل3.65معدل خطأ ،% ResNet 
 .DenseNetو

 النمذجة اللغوية على Penn Treebank:  

o أنتج NAS خلية متكررة جديدة تفوقت على خلية LSTM لبمعد Perplexity  أقل

 .3.6بـ 
 توفير الكفاءة الحسابية:  

o يقلل من التعقيد الحسابي للنماذج مع تحسين الدقة. 

 
 :الكلمات المفتاحية

#الشبكات_العصبونية الذكاء_الاصطناعي #مركز_أبحاث_الذكاء_الاصطناعي #آيرند  #

 #التعلم_المعزز #تصنيف_الصور #النمذجة_اللغوية #التجزئة_الدلالية

Tags: 
#AI #Artificial_Intelligence #Airnd_Center #Neural_Architecture_Search 

#Deep_Learning #Reinforcement_Learning #CIFAR10 #PennTreebank 
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NEURAL ARCHITECTURE SEARCH WITH 

REINFORCEMENT LEARNING 
 

Barret Zoph,∗ Quoc V. Le 
Google Brain 

{barretzoph,qvl}@google.com 
 

 

ABSTRACT 
 

Neural networks are powerful and flexible models that work well for many diffi- 
cult learning tasks in image, speech and natural language understanding. Despite 
their success, neural networks are still hard to design. In this paper, we use a re- 
current network to generate the model descriptions of neural networks and train 
this RNN with reinforcement learning to maximize the expected accuracy of the 
generated architectures on a validation set. On the CIFAR-10 dataset, our method, 
starting from scratch, can design a novel network architecture that rivals the best 
human-invented architecture in terms of test set accuracy. Our CIFAR-10 model 
achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than 
the previous state-of-the-art model that used a similar architectural scheme. On 
the Penn Treebank dataset, our model can compose a novel recurrent cell that out- 
performs the widely-used LSTM cell, and other state-of-the-art baselines. Our cell 
achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplex- 
ity better than the previous state-of-the-art model. The cell can also be transferred 
to the character language modeling task on PTB and achieves a state-of-the-art 
perplexity of 1.214. 

 

1 INTRODUCTION  
 

The last few years have seen much success of deep neural networks in many challenging appli- 
cations, such as speech recognition (Hinton et al., 2012), image recognition (LeCun et al., 1998; 
Krizhevsky et al., 2012) and machine translation (Sutskever et al., 2014; Bahdanau et al., 2015; Wu 
et al., 2016). Along with this success is a paradigm shift from feature designing to architecture 
designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky 
et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and 
ResNet (He et al., 2016a). Although it has become easier, designing architectures still requires a lot 
of expert knowledge and takes ample time. 

 

Figure 1: An overview of Neural Architecture Search. 

 

 
This paper presents Neural Architecture Search, a gradient-based method for finding good architec- 
tures (see Figure 1) . Our work is based on the observation that the structure and connectivity of a 
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neural network can be typically specified by a variable-length string. It is therefore possible to use 
a recurrent network – the controller – to generate such string. Training the network specified by the 
string – the “child network” – on the real data will result in an accuracy on a validation set. Using 
this accuracy as the reward signal, we can compute the policy gradient to update the controller. As a 
result, in the next iteration, the controller will give higher probabilities to architectures that receive 
high accuracies. In other words, the controller will learn to improve its search over time. 

Our experiments show that Neural Architecture Search can design good models from scratch, an 
achievement considered not possible with other methods. On image recognition with CIFAR-10, 
Neural Architecture Search can find a novel ConvNet model that is better than most human-invented 
architectures. Our CIFAR-10 model achieves a 3.65 test set error, while being 1.05x faster than the 
current best model. On language modeling with Penn Treebank, Neural Architecture Search can 
design a novel recurrent cell that is also better than previous RNN and LSTM architectures. The cell 
that our model found achieves a test set perplexity of 62.4 on the Penn Treebank dataset, which is 

3.6 perplexity better than the previous state-of-the-art. 

 

2 RELATED WORK 
 

Hyperparameter optimization is an important research topic in machine learning, and is widely used 
in practice (Bergstra et al., 2011; Bergstra & Bengio, 2012; Snoek et al., 2012; 2015; Saxena & 
Verbeek, 2016). Despite their success, these methods are still limited in that they only search models 
from a fixed-length space. In other words, it is difficult to ask them to generate a variable-length 
configuration that specifies the structure and connectivity of a network. In practice, these methods 
often work better if they are supplied with a good initial model (Bergstra & Bengio, 2012; Snoek et 
al., 2012; 2015). There are Bayesian optimization methods that allow to search non fixed length 
architectures (Bergstra et al., 2013; Mendoza et al., 2016), but they are less general and less flexible 
than the method proposed in this paper. 

Modern neuro-evolution algorithms, e.g., Wierstra et al. (2005); Floreano et al. (2008); Stanley et al. 
(2009), on the other hand, are much more flexible for composing novel models, yet they are usually 
less practical at a large scale. Their limitations lie in the fact that they are search-based methods, 
thus they are slow or require many heuristics to work well. 

Neural Architecture Search has some parallels to program synthesis and inductive programming, the 
idea of searching a program from examples (Summers, 1977; Biermann, 1978). In machine learning, 
probabilistic program induction has been used successfully in many settings, such as learning to 
solve simple Q&A (Liang et al., 2010; Neelakantan et al., 2015; Andreas et al., 2016), sort a list of 
numbers (Reed & de Freitas, 2015), and learning with very few examples (Lake et al., 2015). 

The controller in Neural Architecture Search is auto-regressive, which means it predicts hyperpa- 
rameters one a time, conditioned on previous predictions. This idea is borrowed from the decoder 
in end-to-end sequence to sequence learning (Sutskever et al., 2014). Unlike sequence to sequence 
learning, our method optimizes a non-differentiable metric, which is the accuracy of the child net- 
work. It is therefore similar to the work on BLEU optimization in Neural Machine Translation (Ran- 
zato et al., 2015; Shen et al., 2016). Unlike these approaches, our method learns directly from the 
reward signal without any supervised bootstrapping. 

Also related to our work is the idea of learning to learn or meta-learning (Thrun & Pratt, 2012), a 
general framework of using information learned in one task to improve a future task. More closely 
related is the idea of using a neural network to learn the gradient descent updates for another net- 
work (Andrychowicz et al., 2016) and the idea of using reinforcement learning to find update policies 
for another network (Li & Malik, 2016). 

 

3 METHODS 
 

In the following section, we will first describe a simple method of using a recurrent network to 
generate convolutional architectures. We will show how the recurrent network can be trained with 
a policy gradient method to maximize the expected accuracy of the sampled architectures. We will 
present several improvements of our core approach such as forming skip connections to increase 
model complexity and using a parameter server approach to speed up training. In the last part of 
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the section, we will focus on generating recurrent architectures, which is another key contribution 
of our paper. 

 
3.1 GENERATE MODEL DESCRIPTIONS WITH A CONTROLLER RECURRENT NEURAL 

NETWORK 
 

In Neural Architecture Search, we use a controller to generate architectural hyperparameters of 
neural networks. To be flexible, the controller is implemented as a recurrent neural network. Let’s 
suppose we would like to predict feedforward neural networks with only convolutional layers, we 
can use the controller to generate their hyperparameters as a sequence of tokens: 

 

Figure 2: How our controller recurrent neural network samples a simple convolutional network. It 
predicts filter height, filter width, stride height, stride width, and number of filters for one layer and 
repeats. Every prediction is carried out by a softmax classifier and then fed into the next time step 
as input. 

 

 
In our experiments, the process of generating an architecture stops if the number of layers exceeds 
a certain value. This value follows a schedule where we increase it as training progresses. Once the 
controller RNN finishes generating an architecture, a neural network with this architecture is built 
and trained. At convergence, the accuracy of the network on a held-out validation set is recorded. 
The parameters of the controller RNN, θc, are then optimized in order to maximize the expected 
validation accuracy of the proposed architectures. In the next section, we will describe a policy 
gradient method which we use to update parameters θc so that the controller RNN generates better 
architectures over time. 

 

3.2 TRAINING WITH REINFORCE 

The list of tokens that the controller predicts can be viewed as a list of actions a1:T to design an 
architecture for a child network. At convergence, this child network will achieve an accuracy R on 
a held-out dataset. We can use this accuracy R as the reward signal and use reinforcement learning 
to train the controller. More concretely, to find the optimal architecture, we ask our controller to 
maximize its expected reward, represented by J(θc): 

 

J(θc) = EP (a1:T ;θc)[R] 

Since the reward signal R is non-differentiable, we need to use a policy gradient method to iteratively 
update θc. In this work, we use the REINFORCE rule from Williams (1992): 

Qθc J(θc) = 
Σ 

EP (a1:T ;θc)

 
Qθc log P (at|a(t−1):1; θc)R

  

t=1 

An empirical approximation of the above quantity is: 
m  T 

1 Σ Σ 
Q 

k=1 t=1 

log P (at|a 
 

(t−1):1 ; θc)Rk 

Where m is the number of different architectures that the controller samples in one batch and T is 
the number of hyperparameters our controller has to predict to design a neural network architecture. 

m 
θc 
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The validation accuracy that the k-th neural network architecture achieves after being trained on a 
training dataset is Rk. 

The above update is an unbiased estimate for our gradient, but has a very high variance. In order to 
reduce the variance of this estimate we employ a baseline function: 

 
m  T 

1 Σ Σ 
Q 

k=1 t=1 

log P (at|a 
 

(t−1):1 
; θc)(Rk — b) 

As long as the baseline function b does not depend on the on the current action, then this is still an 
unbiased gradient estimate. In this work, our baseline b is an exponential moving average of the 
previous architecture accuracies. 

 
Accelerate Training with Parallelism and Asynchronous Updates: In Neural Architecture 

Search, each gradient update to the controller parameters θc corresponds to training one child net- 
work to convergence. As training a child network can take hours, we use distributed training and 
asynchronous parameter updates in order to speed up the learning process of the controller (Dean et 

al., 2012). We use a parameter-server scheme where we have a parameter server of S shards, that 
store the shared parameters for K controller replicas. Each controller replica samples m different 
child architectures that are trained in parallel. The controller then collects gradients according to the 
results of that minibatch of m architectures at convergence and sends them to the parameter server 
in order to update the weights across all controller replicas. In our implementation, convergence of 
each child network is reached when its training exceeds a certain number of epochs. This scheme of 
parallelism is summarized in Figure 3. 

 

Figure 3: Distributed training for Neural Architecture Search. We use a set of S parameter servers 
to store and send parameters to K controller replicas. Each controller replica then samples m archi- 
tectures and run the multiple child models in parallel. The accuracy of each child model is recorded 
to compute the gradients with respect to θc, which are then sent back to the parameter servers. 

 

 
3.3 INCREASE ARCHITECTURE COMPLEXITY WITH SKIP CONNECTIONS AND OTHER 

LAYER TYPES 
 

In Section 3.1, the search space does not have skip connections, or branching layers used in modern 
architectures such as GoogleNet (Szegedy et al., 2015), and Residual Net (He et al., 2016a). In this 
section we introduce a method that allows our controller to propose skip connections or branching 
layers, thereby widening the search space. 

To enable the controller to predict such connections, we use a set-selection type attention (Neelakan- 
tan et al., 2015) which was built upon the attention mechanism (Bahdanau et al., 2015; Vinyals et al., 

2015). At layer N , we add an anchor point which has N − 1 content-based sigmoids to indicate the 
previous layers that need to be connected. Each sigmoid is a function of the current hiddenstate of 

the controller and the previous hiddenstates of the previous N − 1 anchor points: 

 

P(Layer j is an input to layer i) = sigmoid(vTtanh(Wprev ∗ hj + Wcurr ∗ hi)), 

where hj represents the hiddenstate of the controller at anchor point for the j-th layer, where j 
ranges from 0 to N − 1. We then sample from these sigmoids to decide what previous layers to be 
used as inputs to the current layer. The matrices Wprev, Wcurr and v are trainable parameters. As 

m 
θc 
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these connections are also defined by probability distributions, the REINFORCE method still applies 
without any significant modifications. Figure 4 shows how the controller uses skip connections to 
decide what layers it wants as inputs to the current layer. 

 

Figure 4: The controller uses anchor points, and set-selection attention to form skip connections. 

 

 
In our framework, if one layer has many input layers then all input layers are concatenated in the 
depth dimension. Skip connections can cause “compilation failures” where one layer is not compat- 
ible with another layer, or one layer may not have any input or output. To circumvent these issues, 
we employ three simple techniques. First, if a layer is not connected to any input layer then the 
image is used as the input layer. Second, at the final layer we take all layer outputs that have not 
been connected and concatenate them before sending this final hiddenstate to the classifier. Lastly, 
if input layers to be concatenated have different sizes, we pad the small layers with zeros so that the 
concatenated layers have the same sizes. 

Finally, in Section 3.1, we do not predict the learning rate and we also assume that the architectures 
consist of only convolutional layers, which is also quite restrictive. It is possible to add the learning 
rate as one of the predictions. Additionally, it is also possible to predict pooling, local contrast 
normalization (Jarrett et al., 2009; Krizhevsky et al., 2012), and batchnorm (Ioffe & Szegedy, 2015) 
in the architectures. To be able to add more types of layers, we need to add an additional step in the 
controller RNN to predict the layer type, then other hyperparameters associated with it. 

 

3.4 GENERATE RECURRENT CELL ARCHITECTURES 

 

In this section, we will modify the above method to generate recurrent cells. At every time step t, 
the controller needs to find a functional form for ht that takes xt and ht−1 as inputs. The simplest 

way is to have ht = tanh(W1 ∗ xt +W2 ∗ ht−1), which is the formulation of a basic recurrent cell. A 
more complicated formulation is the widely-used LSTM recurrent cell (Hochreiter & Schmidhuber, 
1997). 

The computations for basic RNN and LSTM cells can be generalized as a tree of steps that take xt 

and ht−1 as inputs and produce ht as final output. The controller RNN needs to label each node in 
the tree with a combination method (addition, elementwise multiplication, etc.) and an activation 
function (tanh, sigmoid, etc.) to merge two inputs and produce one output. Two outputs are then 
fed as inputs to the next node in the tree. To allow the controller RNN to select these methods and 
functions, we index the nodes in the tree in an order so that the controller RNN can visit each node 
one by one and label the needed hyperparameters. 

Inspired by the construction of the LSTM cell (Hochreiter & Schmidhuber, 1997), we also need cell 

variables ct−1 and ct to represent the memory states. To incorporate these variables, we need the 
controller RNN to predict what nodes in the tree to connect these two variables to. These predictions 
can be done in the last two blocks of the controller RNN. 

To make this process more clear, we show an example in Figure 5, for a tree structure that has two 
leaf nodes and one internal node. The leaf nodes are indexed by 0 and 1, and the internal node is 
indexed by 2. The controller RNN needs to first predict 3 blocks, each block specifying a combina- 
tion method and an activation function for each tree index. After that it needs to predict the last 2 

blocks that specify how to connect ct and ct−1 to temporary variables inside the tree. Specifically, 
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0 

    

 

 

Figure 5: An example of a recurrent cell constructed from a tree that has two leaf nodes (base 2) 
and one internal node. Left: the tree that defines the computation steps to be predicted by controller. 
Center: an example set of predictions made by the controller for each computation step in the tree. 
Right: the computation graph of the recurrent cell constructed from example predictions of the 
controller. 

 

 
according to the predictions of the controller RNN in this example, the following computation steps 
will occur: 

• The controller predicts Add and Tanh for tree index 0, this means we need to compute 

a0 = tanh(W1 ∗ xt + W2 ∗ ht−1). 

• The controller predicts ElemMult and ReLU for tree index 1, this means we need to 
compute a1 = ReLU (W3 ∗ xt) ⊙ (W4 ∗ ht−1) . 

• The controller predicts 0 for the second element of the “Cell Index”, Add and ReLU for 

elements in “Cell Inject”, which means we need to compute anew = ReLU(a0 + ct−1). 
Notice that we don’t have any learnable parameters for the internal nodes of the tree. 

• The controller predicts ElemMult and Sigmoid for tree index 2, this means we need to 
compute a2 = sigmoid(anew ⊙ a1). Since the maximum index in the tree is 2, ht is set to 

a2. 

• The controller RNN predicts 1 for the first element of the “Cell Index”, this means that we 
should set ct to the output of the tree at index 1 before the activation, i.e., ct = (W3 ∗ xt) ⊙ 
(W4 ∗ ht−1). 

In the above example, the tree has two leaf nodes, thus it is called a “base 2” architecture. In our 
experiments, we use a base number of 8 to make sure that the cell is expressive. 

 

4 EXPERIMENTS AND RESULTS 
 

We apply our method to an image classification task with CIFAR-10 and a language modeling task 
with Penn Treebank, two of the most benchmarked datasets in deep learning. On CIFAR-10, our 
goal is to find a good convolutional architecture whereas on Penn Treebank our goal is to find a good 
recurrent cell. On each dataset, we have a separate held-out validation dataset to compute the reward 
signal. The reported performance on the test set is computed only once for the network that achieves 
the best result on the held-out validation dataset. More details about our experimental procedures 
and results are as follows. 

 

4.1 LEARNING CONVOLUTIONAL ARCHITECTURES FOR CIFAR-10 
 

Dataset: In these experiments we use the CIFAR-10 dataset with data preprocessing and aug- 
mentation procedures that are in line with other previous results. We first preprocess the data by 
whitening all the images. Additionally, we upsample each image then choose a random 32x32 crop 
of this upsampled image. Finally, we use random horizontal flips on this 32x32 cropped image. 

 
Search space: Our search space consists of convolutional architectures, with rectified linear units 
as non-linearities (Nair & Hinton, 2010), batch normalization (Ioffe & Szegedy, 2015) and skip 
connections between layers (Section 3.3). For every convolutional layer, the controller RNN has to 
select a filter height in [1, 3, 5, 7], a filter width in [1, 3, 5, 7], and a number of filters in [24, 36, 48, 
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64]. For strides, we perform two sets of experiments, one where we fix the strides to be 1, and one 
where we allow the controller to predict the strides in [1, 2, 3]. 

 
Training details: The controller RNN is a two-layer LSTM with 35 hidden units on each layer. 
It is trained with the ADAM optimizer (Kingma & Ba, 2015) with a learning rate of 0.0006. The 
weights of the controller are initialized uniformly between -0.08 and 0.08. For the distributed train- 
ing, we set the number of parameter server shards S to 20, the number of controller replicas K to 

100 and the number of child replicas m to 8, which means there are 800 networks being trained on 
800 GPUs concurrently at any time. 

Once the controller RNN samples an architecture, a child model is constructed and trained for 50 
epochs. The reward used for updating the controller is the maximum validation accuracy of the last 
5 epochs cubed. The validation set has 5,000 examples randomly sampled from the training set, the 
remaining 45,000 examples are used for training. The settings for training the CIFAR-10 child 
models are the same with those used in Huang et al. (2016a). We use the Momentum Optimizer 
with a learning rate of 0.1, weight decay of 1e-4, momentum of 0.9 and used Nesterov Momentum 
(Sutskever et al., 2013). 

During the training of the controller, we use a schedule of increasing number of layers in the child 
networks as training progresses. On CIFAR-10, we ask the controller to increase the depth by 2 for 
the child models every 1,600 samples, starting at 6 layers. 

 
Results: After the controller trains 12,800 architectures, we find the architecture that achieves the 
best validation accuracy. We then run a small grid search over learning rate, weight decay, batchnorm 
epsilon and what epoch to decay the learning rate. The best model from this grid search is then run 
until convergence and we then compute the test accuracy of such model and summarize the results 
in Table 1. As can be seen from the table, Neural Architecture Search can design several promising 
architectures that perform as well as some of the best models on this dataset. 

 
 

Model Depth Parameters Error rate (%) 
 

Network in Network (Lin et al., 2013) - - 8.81 

All-CNN (Springenberg et al., 2014) - - 7.25 
Deeply Supervised Net (Lee et al., 2015) - - 7.97 

Highway Network (Srivastava et al., 2015) - - 7.72 

Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37 
 

FractalNet (Larsson et al., 2016) 21 38.6M 5.22 

with Dropout/Drop-path 21 38.6M 4.60 
 

ResNet (He et al., 2016a) 110 1.7M 6.61 
 

ResNet (reported by Huang et al. (2016c)) 110 1.7M 6.41 
 

ResNet with Stochastic Depth (Huang et al., 2016c) 110 1.7M 
1202 10.2M 

5.23 
4.91 

 

Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 
28 36.5M 

4.81 
4.17 

 

ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46 

1001 10.2M 4.62 

DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24 
DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4.10 

DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 3.74 

DenseNet-BC (L = 100, k = 40) Huang et al. (2016b) 190 25.6M 3.46 
 

Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50 
Neural Architecture Search v2 predicting strides 20 2.5M 6.01 

Neural Architecture Search v3 max pooling 39 7.1M 4.47 

Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65 

Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10. 
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First, if we ask the controller to not predict stride or pooling, it can design a 15-layer architecture 
that achieves 5.50% error rate on the test set. This architecture has a good balance between accuracy 
and depth. In fact, it is the shallowest and perhaps the most inexpensive architecture among the top 
performing networks in this table. This architecture is shown in Appendix A, Figure 7. A notable 
feature of this architecture is that it has many rectangular filters and it prefers larger filters at the top 
layers. Like residual networks (He et al., 2016a), the architecture also has many one-step skip 
connections. This architecture is a local optimum in the sense that if we perturb it, its performance 
becomes worse. For example, if we densely connect all layers with skip connections, its performance 
becomes slightly worse: 5.56%. If we remove all skip connections, its performance drops to 7.97%. 

In the second set of experiments, we ask the controller to predict strides in addition to other hyper- 
parameters. As stated earlier, this is more challenging because the search space is larger. In this 
case, it finds a 20-layer architecture that achieves 6.01% error rate on the test set, which is not much 
worse than the first set of experiments. 

Finally, if we allow the controller to include 2 pooling layers at layer 13 and layer 24 of the archi- 
tectures, the controller can design a 39-layer network that achieves 4.47% which is very close to the 
best human-invented architecture that achieves 3.74%. To limit the search space complexity we have 
our model predict 13 layers where each layer prediction is a fully connected block of 3 layers. 
Additionally, we change the number of filters our model can predict from [24, 36, 48, 64] to [6, 12, 
24, 36]. Our result can be improved to 3.65% by adding 40 more filters to each layer of our archi- 
tecture. Additionally this model with 40 filters added is 1.05x as fast as the DenseNet model that 
achieves 3.74%, while having better performance. The DenseNet model that achieves 3.46% error 
rate (Huang et al., 2016b) uses 1x1 convolutions to reduce its total number of parameters, which we 
did not do, so it is not an exact comparison. 

 

4.2 LEARNING RECURRENT CELLS FOR PENN TREEBANK 
 

Dataset: We apply Neural Architecture Search to the Penn Treebank dataset, a well-known bench- 
mark for language modeling. On this task, LSTM architectures tend to excel (Zaremba et al., 2014; 
Gal, 2015), and improving them is difficult (Jozefowicz et al., 2015). As PTB is a small dataset, reg- 
ularization methods are needed to avoid overfitting. First, we make use of the embedding dropout 
and recurrent dropout techniques proposed in Zaremba et al. (2014) and (Gal, 2015). We also try to 
combine them with the method of sharing Input and Output embeddings, e.g., Bengio et al. (2003); 
Mnih & Hinton (2007), especially Inan et al. (2016) and Press & Wolf (2016). Results with this 
method are marked with “shared embeddings.” 

 
Search space: Following Section 3.4, our controller sequentially predicts a combination method 
then an activation function for each node in the tree. For each node in the tree, the controller RNN 
needs to select a combination method in [add, elem mult] and an activation method in [identity, 
tanh, sigmoid, relu]. The number of input pairs to the RNN cell is called the “base number” and set 

to 8 in our experiments. When the base number is 8, the search space is has ap- proximately 6 × 
1016 architectures, which is much larger than 15,000, the number of architectures that we allow our 
controller to evaluate. 

 
Training details: The controller and its training are almost identical to the CIFAR-10 experiments 
except for a few modifications: 1) the learning rate for the controller RNN is 0.0005, slightly smaller 

than that of the controller RNN in CIFAR-10, 2) in the distributed training, we set S to 20, K to 400 
and m to 1, which means there are 400 networks being trained on 400 CPUs concurrently at any 
time, 3) during asynchronous training we only do parameter updates to the parameter-server once 
10 gradients from replicas have been accumulated. 

In our experiments, every child model is constructed and trained for 35 epochs. Every child model 
has two layers, with the number of hidden units adjusted so that total number of learnable parameters 
approximately match the “medium” baselines (Zaremba et al., 2014; Gal, 2015). In these experi- 
ments we only have the controller predict the RNN cell structure and fix all other hyperparameters. 
The reward function is c 2 where c is a constant, usually set at 80. 

(validation perplexity) 

After the controller RNN is done training, we take the best RNN cell according to the lowest val- 
idation perplexity and then run a grid search over learning rate, weight initialization, dropout rates 



14 

 

 

and decay epoch. The best cell found was then run with three different configurations and sizes to 
increase its capacity. 

 
Results: In Table 2, we provide a comprehensive list of architectures and their performance on the 
PTB dataset. As can be seen from the table, the models found by Neural Architecture Search 
outperform other state-of-the-art models on this dataset, and one of our best models achieves a gain 
of almost 3.6 perplexity. Not only is our cell is better, the model that achieves 64 perplexity is also 
more than two times faster because the previous best network requires running a cell 10 times per 
time step (Zilly et al., 2016). 

 

Model Parameters Test Perplexity 

Mikolov & Zweig (2012) - KN-5 2M‡ 141.2 
Mikolov & Zweig (2012) - KN5 + cache 2M‡ 125.7 
Mikolov & Zweig (2012) - RNN 6M‡ 124.7 
Mikolov & Zweig (2012) - RNN-LDA 7M‡ 113.7 
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache 9M‡ 92.0 
Pascanu et al. (2013) - Deep RNN 6M 107.5 
Cheng et al. (2014) - Sum-Prod Net 5M‡ 100.0 
Zaremba et al. (2014) - LSTM (medium) 20M 82.7 
Zaremba et al. (2014) - LSTM (large) 66M 78.4 
Gal (2015) - Variational LSTM (medium, untied) 20M 79.7 
Gal (2015) - Variational LSTM (medium, untied, MC) 20M 78.6 
Gal (2015) - Variational LSTM (large, untied) 66M 75.2 
Gal (2015) - Variational LSTM (large, untied, MC) 66M 73.4 
Kim et al. (2015) - CharCNN 19M 78.9 
Press & Wolf (2016) - Variational LSTM, shared embeddings 51M 73.2 
Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6 
Merity et al. (2016) - Pointer Sentinel-LSTM (medium) 21M 70.9 
Inan et al. (2016) - VD-LSTM + REAL (large) 51M 68.5 
Zilly et al. (2016) - Variational RHN, shared embeddings 24M 66.0 

Neural Architecture Search with base 8 32M 67.9 
Neural Architecture Search with base 8 and shared embeddings 25M 64.0 
Neural Architecture Search with base 8 and shared embeddings 54M 62.4 

Table 2: Single model perplexity on the test set of the Penn Treebank language modeling task. 

Parameter numbers with ‡ are estimates with reference to Merity et al. (2016). 

The newly discovered cell is visualized in Figure 8 in Appendix A. The visualization reveals that 
the new cell has many similarities to the LSTM cell in the first few steps, such as it likes to compute 

W1 ∗ ht−1 + W2 ∗ xt several times and send them to different components in the cell. 

Transfer Learning Results: To understand whether the cell can generalize to a different task, we 
apply it to the character language modeling task on the same dataset. We use an experimental setup 
that is similar to Ha et al. (2016), but use variational dropout by Gal (2015). We also train our own 
LSTM with our setup to get a fair LSTM baseline. Models are trained for 80K steps and the best test 
set perplexity is taken according to the step where validation set perplexity is the best. The results 
on the test set of our method and state-of-art methods are reported in Table 3. The results on small 
settings with 5-6M parameters confirm that the new cell does indeed generalize, and is better than 
the LSTM cell. 

Additionally, we carry out a larger experiment where the model has 16.28M parameters. This model 

has a weight decay rate of 1e − 4, was trained for 600K steps (longer than the above models) and 
the test perplexity is taken where the validation set perplexity is highest. We use dropout rates of 0.2 
and 0.5 as described in Gal (2015), but do not use embedding dropout. We use the ADAM optimizer 
with a learning rate of 0.001 and an input embedding size of 128. Our model had two layers with 
800 hidden units. We used a minibatch size of 32 and BPTT length of 100. With this setting, our 
model achieves 1.214 perplexity, which is the new state-of-the-art result on this task. 

Finally, we also drop our cell into the GNMT framework (Wu et al., 2016), which was previously 

tuned for LSTM cells, and train an WMT14 English → German translation model. The GNMT 
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RNN Cell Type Parameters Test Bits Per Character 

Ha et al. (2016) - Layer Norm HyperLSTM 4.92M 1.250 
Ha et al. (2016) - Layer Norm HyperLSTM Large Embeddings 5.06M 1.233 

Ha et al. (2016) - 2-Layer Norm HyperLSTM 14.41M 1.219 

Two layer LSTM 6.57M 1.243 
Two Layer with New Cell 6.57M 1.228 

Two Layer with New Cell 16.28M 1.214 

Table 3: Comparison between our cell and state-of-art methods on PTB character modeling. The 
new cell was found on word level language modeling. 

 
network has 8 layers in the encoder, 8 layers in the decoder. The first layer of the encoder has 
bidirectional connections. The attention module is a neural network with 1 hidden layer. When a 
LSTM cell is used, the number of hidden units in each layer is 1024. The model is trained in a 
distributed setting with a parameter sever and 12 workers. Additionally, each worker uses 8 GPUs 
and a minibatch of 128. We use Adam with a learning rate of 0.0002 in the first 60K training steps, 
and SGD with a learning rate of 0.5 until 400K steps. After that the learning rate is annealed by 
dividing by 2 after every 100K steps until it reaches 0.1. Training is stopped at 800K steps. More 
details can be found in Wu et al. (2016). 

In our experiment with the new cell, we make no change to the above settings except for dropping in 
the new cell and adjusting the hyperparameters so that the new model should have the same compu- 
tational complexity with the base model. The result shows that our cell, with the same computational 
complexity, achieves an improvement of 0.5 test set BLEU than the default LSTM cell. Though this 
improvement is not huge, the fact that the new cell can be used without any tuning on the existing 
GNMT framework is encouraging. We expect further tuning can help our cell perform better. 

 
Control Experiment 1 – Adding more functions in the search space: To test the robustness of 
Neural Architecture Search, we add max to the list of combination functions and sin to the list 
of activation functions and rerun our experiments. The results show that even with a bigger search 
space, the model can achieve somewhat comparable performance. The best architecture with max 
and sin is shown in Figure 8 in Appendix A. 

 
Control Experiment 2 – Comparison against Random Search: Instead of policy gradient, one 
can use random search to find the best network. Although this baseline seems simple, it is often very 
hard to surpass (Bergstra & Bengio, 2012). We report the perplexity improvements using policy 
gradient against random search as training progresses in Figure 6. The results show that not only 
the best model using policy gradient is better than the best model using random search, but also the 
average of top models is also much better. 
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Figure 6: Improvement of Neural Architecture Search over random search over time. We plot the 
difference between the average of the top k models our controller finds vs. random search every 400 
models run. 
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5 CONCLUSION  
 

In this paper we introduce Neural Architecture Search, an idea of using a recurrent neural network to 
compose neural network architectures. By using recurrent network as the controller, our method is 
flexible so that it can search variable-length architecture space. Our method has strong empirical per- 
formance on very challenging benchmarks and presents a new research direction for automatically 
finding good neural network architectures. The code for running the models found by the controller 
on CIFAR-10 and PTB will be released at https://github.com/tensorflow/models . Additionally, we 
have added the RNN cell found using our method under the name NASCell into TensorFlow, so 
others can easily use it. 
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A  APPENDIX  

 

Figure 7: Convolutional architecture discovered by our method, when the search space does not 
have strides or pooling layers. FH is filter height, FW is filter width and N is number of filters. Note 
that the skip connections are not residual connections. If one layer has many input layers then all 
input layers are concatenated in the depth dimension. 
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Figure 8: A comparison of the original LSTM cell vs. two good cells our model found. Top left: 
LSTM cell. Top right: Cell found by our model when the search space does not include max and 
sin. Bottom: Cell found by our model when the search space includes max and sin (the controller 
did not choose to use the sin function). 
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